Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0031424, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656185

RESUMO

Currently, Helicobacter pylori eradication by antibiotic therapy faces various challenges, including antibiotic resistance, side effects on intestinal commensal bacteria, and patient compliance. In this study, loureirin A (LrA), a traditional Chinese medicine monomer extracted from Sanguis Draconis flavones, was found to possess specific antibacterial activity against H. pylori without the bacteria displaying a tendency to develop resistance in vitro. LrA demonstrated a synergistic or additive effect when combined with omeprazole (a proton pump inhibitor) against H. pylori. The combination of LrA and omeprazole showed promising anti-H. pylori potential, exhibiting notable in vivo efficacy comparable to standard triple therapy in mouse models infected with both drug-sensitive and drug-resistant H. pylori strains. Moreover, the narrow-spectrum antibacterial profile of LrA is reflected in its minimal effect on the diversity and composition of the mouse gut microbiota. The underlying mechanism of action of LrA against H. pylori involves the generation of bactericidal levels of reactive oxygen species, resulting in apoptosis-like cell death. These findings indicate that LrA is a promising lead compound targeting H. pylori without harming the commensal bacteria.

2.
Helicobacter ; 29(2): e13075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38627919

RESUMO

BACKGROUND: The current standard treatment for Helicobacter pylori infection, which involves a combination of two broad-spectrum antibiotics, faces significant challenges due to its detrimental impact on the gut microbiota and the emergence of drug-resistant strains. This underscores the urgent requirement for the development of novel anti-H. pylori drugs. Zoliflodacin, a novel bacterial gyrase inhibitor, is currently undergoing global phase III clinical trials for treating uncomplicated Neisseria gonorrhoeae. However, there is no available data regarding its activity against H. pylori. MATERIALS AND METHODS: We evaluated the in vitro activity of zoliflodacin against H. pylori clinical isolates (n = 123) with diverse multidrug resistance. We performed DNA gyrase supercoiling and microscale thermophoresis assays to identify the target of zoliflodacin in H. pylori. We analyzed 2262 H. pylori whole genome sequences to identify Asp424Asn and Lys445Asn mutations in DNA gyrase subunit B (GyrB) that are associated with zoliflodacin resistance. RESULTS: Zoliflodacin exhibits potent activity against all tested isolates, with minimal inhibitory concentration (MIC) values ranging from 0.008 to 1 µg/mL (MIC50: 0.125 µg/mL; MIC90: 0.25 µg/mL). Importantly, there was no evidence of cross-resistance to any of the four first-line antibiotics commonly used against H. pylori. We identified GyrB as the primary target of zoliflodacin, with Asp424Asn or Lys445Asn substitutions conferring resistance. Screening of 2262 available H. pylori genomes for the two mutations revealed only one clinical isolate carrying Asp424Asn substitution. CONCLUSION: These findings support the potential of zoliflodacin as a promising candidate for H. pylori treatment, warranting further development and evaluation.


Assuntos
Barbitúricos , Infecções por Helicobacter , Helicobacter pylori , Isoxazóis , Morfolinas , Oxazolidinonas , Compostos de Espiro , Humanos , Antibacterianos/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Testes de Sensibilidade Microbiana , Ensaios Clínicos Fase III como Assunto
3.
Sci Adv ; 9(31): eadg5995, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540745

RESUMO

Staphylococcus aureus poses a severe public health problem as one of the vital causative agents of healthcare- and community-acquired infections. There is a globally urgent need for new drugs with a novel mode of action (MoA) to combat S. aureus biofilms and persisters that tolerate antibiotic treatment. We demonstrate that a benzonaphthopyranone glycoside, chrysomycin A (ChryA), is a rapid bactericide that is highly active against S. aureus persisters, robustly eradicates biofilms in vitro, and shows a sustainable killing efficacy in vivo. ChryA was suggested to target multiple critical cellular processes. A wide range of genetic and biochemical approaches showed that ChryA directly binds to GlmU and DapD, involved in the biosynthetic pathways for the cell wall peptidoglycan and lysine precursors, respectively, and inhibits the acetyltransferase activities by competition with their mutual substrate acetyl-CoA. Our study provides an effective antimicrobial strategy combining multiple MoAs onto a single small molecule for treatments of S. aureus persistent infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Biofilmes
4.
J Nat Prod ; 85(4): 1029-1038, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35412828

RESUMO

Seven new naphthoquinone diglycosides (1-7), three new anthraquinones (8-10), and eight known analogues were obtained from the aerial parts of Mitracarpus hirtus collected from West Africa in a bioassay-guided phytochemical investigation. All isolated compounds were elucidated by comparison with the literature and interpretation of spectroscopic data, and the absolute configurations of the new naphthoquinone diglycosides (1-10) were confirmed by chemical methods and ECD calculations. Notably, compound 1 was found to be the first naphthoquinone diglycoside containing carboxylic acid and isopentenyl side chains isolated from a species in the genus Mitracarpus. Compounds 6-18 showed antibacterial activity against multiple Helicobacter pylori strains with MIC values ranging from 0.0625 to 64 µg/mL. Particularly, 1-hydroxybenzoisochromanquinone (17) and benzo[g]isoquinoline-5,10-dione (18), with MIC values of 0.0625 and 0.125 µg/mL, displayed 32-512-fold higher potencies than a positive control, metronidazole. Compound 18 also demonstrated high antibiofilm activity and killed biofilm-encased Helicobacter pylori cells more effectively than metronidazole.


Assuntos
Helicobacter pylori , Naftoquinonas , Rubiaceae , Antibacterianos/farmacologia , Benzoquinonas , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Naftoquinonas/farmacologia , Componentes Aéreos da Planta
5.
Microb Biotechnol ; 15(2): 442-454, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33780131

RESUMO

Antibiotic resistance in Helicobacter pylori has been growing worldwide with current treatment regimens. Development of new compounds for treatment of H. pylori infections is urgently required to achieve a successful eradication therapy in the future. Armeniaspirols, a novel class of natural products isolated from Streptomyces armeniacus, have been previously identified as antibacterial agents against Gram-positive pathogens. In this study, we found that armeniaspirol A (ARM1) exhibited potent antibacterial activity against H. pylori, including multidrug-resistant strains, with MIC range values of 4-16 µg ml-1 . The underlying mechanism of action of ARM1 against H. pylori involved the disruption of bacterial cell membranes. Also, ARM1 inhibited biofilm formation, eliminated preformed biofilms and killed biofilm-encased H. pylori in a dose-dependent manner. In a mouse model of multidrug-resistant H. pylori infection, dual therapy with ARM1 and omeprazole showed efficient in vivo killing efficacy comparable to the standard triple therapy, and induced negligible toxicity against normal tissues. Moreover, at acidic pH 2.5, ARM1 exhibited a much more potent anti-H. pylori activity than metronidazole. Thus, these findings demonstrated that ARM1 is a novel potent anti-H. pylori agent, which can be developed as a promising drug lead for treatment of H. pylori infections.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Antibacterianos/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Camundongos , Pirróis , Compostos de Espiro
6.
Fitoterapia ; 152: 104908, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33892126

RESUMO

Chemical investigation of the extracts of Aspergillus sp. CSYZ-1 resulted in the identification of compound 1, aspergillactone, a new 3,5-dimethylorsellinic acid-based meroterpenoid, together with four known metabolites (2-5). The structure and relative configuration of 1 were unambiguously determined by nuclear magnetic resonance (NMR), mass spectrometry. The absolute configuration of 1 was defined by quantum chemical TDDFT calculated and the experimental ECD spectra. The possible biosynthetic pathway of compound 1 was also proposed. The new compound exhibited potent antimicrobial activity against Helicobacter pylori and Staphylococcus aureus with MIC values of around 1-4 and 2-16 µg/mL, respectively.


Assuntos
Antibacterianos/farmacologia , Aspergillus/química , Resorcinóis/farmacologia , Terpenos/farmacologia , Antibacterianos/isolamento & purificação , China , Sedimentos Geológicos/microbiologia , Helicobacter pylori/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Resorcinóis/isolamento & purificação , Água do Mar/microbiologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...